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ABSTRACT 

We construct  funny rank-one infinite measure preserving free actions T of 

a countable Abelian group G satisfying each of the following properties: 

(1) Tg I x . . -  x Tgk is ergodic for each finite sequence g l , . . - , g k  of G- 

e lements  of infinite order,  (2) T x T is nonconservative, (3) T x T is 

nonergodic but  all k-fold Cartesian products  are conservative, and the  

L ~ - s p e c t r u m  of T is trivial, (4) for each g of infinite order, all k-fold 

Cartesian products  of T 9 are ergodic, but  T2g x Tg is nonconservative. 

A topological version of this theorem holds. Moreover, given an AT-flow 

W, we construct  nonsingular G-actions T with similar propert ies and such 

that  the associated flow of  T is W. Orbit  theory is used in an essential 

way here. 

0. I n t r o d u c t i o n  

The goal of this work is to construct infinite measure preserving and nonsingular 

funny rank-one free actions of countable Abelian groups with various dynamical 

properties. The construction of these actions is based on a common idea: every 

one appears as a n  inductive limit of some partially defined actions" associated 

to two certain sequences (Cn) and (Fn) of finite subsets in the group. We call 

them (C, F ) - a c t i o n s .  It  is worthwhile to remark that  the (C, F)-actions appear  

as minimal topological actions on locally compact totally disconnected spaces. 
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Moreover, they are uniquely ergodic, i.e. they admit a unique (up to scaling) 

invariant or-finite Radon measure (Borel measure which is finite on the compact 

subsets). 

Now we record our main result about infinite measure preserving actions. 

THEOREM 0.1: Let G be a countable Abelian group. Given i E {1, . . . ,5} ,  

there exists a funny rank one infinite measure preserving free (C, F)-action T = 

{Tg}gcc of G such that the property (i) of the following list is satisfied: 

(1) for every g E G of infinite order, the transformation Tg has infinite ergodic 

index, i.e. all its k-fold Cartesian products are ergodic, 

(2) for each finite sequence 91 , . . . ,gn  of G-elements of infinite order, the 

transformation T91 x . . .  x Tg, is ergodic, 

(3) for each g E G of infinite order, Tg has infinite ergodic index but T2g x Tg 

is nonconservative, 

(4) the Cartesian square o f T  is nonconservative, 

(5) T has trivial L~176 nonergodic Cartesian square but all k-fold 

Cartesian products conservative. 

When proving this theorem we obtain automatically a topological version of 

(a part of) it. as follows 

THEOREM 0.2: Given i E {1, 2}, there exists a minimal uniquely ergodic ( C, F)- 

action T : {Tg}gcG of G on a locally compact non-compact totally disconnected 

metrizable space without isolated points such that the property (i) of the follow- 

ing list is satisfied: 

(1) for every g E G of infinite order, the transformation Tg has infinite topolog- 

ically transitive index, i.e. all its k-fold Cartesian products are topologically 

transitive, 

(2) for each finite sequence g l , . . . ,  gn of G-elements of infinite order, the trans- 

formation Tg 1 x . . .  x Tg~ is topologically transitive. 

For other topological properties of (C, F)-transformations we refer to [Da]. 

The third main result of this paper is a nonsingular counterpart of Theorem 0.1. 

THEOREM 0.3: Let W be an AT-flow (see the comment below). Given i C 

{1 , . . . ,  5}, there is a funny rank one nonsingular free (C, F)-action T of G whose 

associated flow is W and the property (i) of Theorem 0.1 is valid. 

After the main results have now been formulated let us make some comments. 

We recall that for finite measure preserving actions the following properties are 

equivalent: (a) T has trivial L ~176 (= L2)-spectrum, (b) T x T is ergodic, (c) 
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T has infinite ergodic index. In general--for arbitrary nonsingular actions-- 

we have only (c) =v (b) ~ (a). The first counterexamples to (b) =v (c) and 

(a) ==v (b) for infinite measure preserving actions of Z were given in [KP] and 

[ALW] respectively. Those transformations are infinite Markov shifts. They 

possess "strong" stochastic properties and are quite different from our (C, F)- 

actions. Moreover, as noticed in [AFS1] it is impossible to construct Markov 

shifts satisfying Theorem 0.1(5). Another sort of counterexamples which are 

similar to our ones was demonstrated in [AFS1], [AFS2], [DGMS] and [M--Z]. A 

particular case of Theorem 0.1 where G = Z was proved there: the examples (1), 

(4), (5) appear in [AFS1]~ the example (2) in [DGMS], and the example (3) in 

[AFS2]. Moreover, for G = Z ~, the example (2) appears in [M Z]. 

Before we pass to Theorem 0.3 let us recall that one can associate a measurable 

flow (i.e. an action of R) to every nonsingular action of G [Sc], [HO]. By the 

celebrated Dye-Krieger theorem there is a bijective correspondence between the 

orbit equivalent classes of ergodic G-actions and the conjugacy classes of ergodic 

R-flows. An important class of ergodic flows, AT-flows, was isolated in [CW]. 

They are exactly the associated flows of product odometers. For example, the 

transitive flows and the finite measure preserving flows with discrete spectra are 

AT. 

By the way, we mention a natural problem concerning AT-flows. Since a prod- 

uct odometer is a rotation on a compact group, its L~-spectrum is large: the 

eigenfunctions separate points. So, given G and an AT-flow W, is it possible to 

find a free action of G with trivial L~-spectrum and whose associated flow is W? 
For the moment, the answer was not known even for G = Z. Now the positive 

solution to this problem follows from Theorem 0.3(2). 

A very particular case of Theorem 0.3 was proved for the moment. If G -- Z, 

W is transitive and its stabilizer is (log A)Z, 0 < ,k < l, then the example (5) was 

constructed in [AFS1] and the example (2) in [AFS2]. These a~ssumptions on W 

mean that  the corresponding G-action is of type IIIx. As concerns Za-actions, 

only a weak version of (1) is demonstrated in [M-Z]: there is an action of type 

IIIx, 0 < A <_ 1 such that the generators of ~d have infinite ergodic index, and 

there is an action of type IIIo such that the generators are ergodic and have 

trivial L~-spectrum (the associated flow is not specified there). 

Now we specify the main point of difference between our work and those papers. 

The transformations from [AFS1], [AFS2], [DGMS] and [M-Z] are constructed via 

the well-known "cutting and stacking" techniques [Fr]. It has a clear geometrical 

nature and is very convenient in the case G = Z or even G = Z d. However, 
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for more "complicated" groups like Z~ ~ Q or groups with torsions it does not 

appear quite transparent especially when constructing nonsingular actions. That 

is why we develop an alternative approach replacing "cutting and stacking" with 

the "more algebraic" (C, F)-construction. The latter is rather universal and 

does not "feel" much difference between Z and Q or between measure preserving 

and nonsingular actions. Moreover, it is especially well suited for applying the 

measurable orbit theory which is used in an essential way here. 

Recall also that  the transformations from [AFS1], [AFS2], [DGMS] and [M-Z] 

are rank one. However, it is not quite clear what "rank one" is for actions of 

Abelian groups other than Z d. But a concept of "funny rank one"--introduced 

by J.-P. Thouvenot--is generalized naturally to nonsingular actions of arbitrary 

groups [So]. We show that the (C, F)-actions have funny rank one. Moreover, 

in the case G = 7/. d, the assertion of Theorems 0.1-0.3 can be a bit strengthened 

by the claim that T has r a n k  one ("by cubes") and not only funny rank one. 

This is because the sets F,, in the (C, F)-construction in our theorems are rather 

"flexible" and it is always possible to choose them in the form of cubes (see 

Remark 2.6(ii)). 

The outline of the paper is as follows. Section 1 contains background mate- 

rial mainly from orbit theory. In Section 2 we introduce and study the (C, F)- 

construction of a-finite measure preserving actions and prove Theorems 0.1, 0.2 

and related results. A particular case of this construction, where Cn and F,~ are 

"well balanced", is considered in Section 3. It results in what we call general -  

ized H a j i a n - K a k u t a n i  ac t ions  (cf. [HK], [EHI], [M-Z]). They are of f ini te  

t y p e  in the sense of [EHI]. The problems related to tilings, weakly wandering 

subsets, nonsingular disjointness are under discussion here. In the final Section 4 
we adapt the (C, F)-construction to the nonsingular case and prove Theorem 0.3. 

After this work had been completed the author learned that the (C,F)-  

construction appeared initially in [Ju]. However, A. del Junco studied there 

only finite measure preserving actions while our paper is devoted to infinite mea- 

sure preserving and nonsingular ones. Moreover, the problems considered here 

and in [Ju] are quite different and have no "common" part. I thank C. E. Silva 

for drawing my attention to [AFS2], [M-Z] and [Ju]. 

1. P r e l im ina r i e s  

MEASURED EQUIVALENCE RELATIONS AND THEIR COCYCLES. For  a detailed 

account of the discussion in this section we refer the reader to [FM], [Sc], [HO]. 

Let (X, ~3) be a standard Borel space and 7~ a Borel countable equivalence 



Vol. 121, 2001 WEAK MIXING FOR NONSINGULAR ACTIONS 33 

relation on it [FM]. Consider a Borel bijection 7 of a Borel subset A onto a Borel 

subset B. If (x, 3"x) E 7~ for each x E A then 7 is a p a r t i a l  7~ - t r ans fo rma t ion  

with domain A and range B (we shall write D(7) = A, R(7) = B). The groupoid 

of partial T~-transformations is denoted by [[T~]]. The full  g r o u p  [7~] is the subset 

of partial T~-transformations whose domain and range are the entire X. Given 

A E f13, we denote by T/ r A the restriction of T~ to A, i.e. 7~ r A := T~ n (A • A) 

with the induced Bore[ structure. The product of two equivalence relations T~ 

and 7~ ~ is denoted by ~ | T~ ~. 

Let # be a a-finite measure on X. R is said to be # -nons ingu la r  if # o 7 

is equivalent to/~ for each 3' E [7"/]. It is known that every Borel equivalence 

relation is the orbit equivalence relation for a countable group F of Borel au- 

tomorphisms of X (see [FM]) (this group is not unique). 7~ is #-nonsingular if 

every transformation 3' E F is. 7~ is e rgod ic  if every Borel T~-saturated subset 

(i.e. a union of R-classes) is either #-null or p-conull. Two nonsingular equiva- 

lence relations T~ on (X, ~ ,  #) and (X', ~B', #') are i so m o rp h i c  if there is a Borel 

bijection r X ~ X '  such that  #~ o r ~ # and r x r162 [ X0) = 7~ ~ [ X~ for conull 

subsets X0 C X and X~ C X ~. An ergodic equivalence relation is h y p e r f i n i t e  if 

it is isomorphic to the orbit equivalence relation of a single (ergodic) transforma- 

tion. If F is an ergodic Abel[an transformation group then its orbit equivalence 

relation is hyperfinite. 

Let G be a locally compact second countable group. A Borel map c~: T~ ~ G 

is a cocyc l e  if 

for all (x, y), (y, z) E 7~. We define the o-skew product equivalence relation 

7~ • G on X • G equipped with the product Borel structure by setting 

(x, g) ~ (y, h) if (x, y) E n and h = gc~(x, y). 

Suppose that ~ is #-nonsingular. Then 7~ • a G is # x Aa-nonsingular, where 

Aa is right Haar measure on G. If 7~ x~ G is ergodic then a is said to have  

d e n s e  r a n g e  in G. a is said to be t r a n s i e n t  if 7~ x ~ G is nonconservative, i.e. 

its "orbit partition" is measurable. 

Recall that the natural G-action on X x G by left translations along the second 

coordinate induces a nonsingular G-action on the quotient measure space of T/x 

G-ergodic components. It is called the ac t i o n  a s soc i a t ed  to  (7~, a)  or the 

M a c k e y  ac t ion .  It is ergodic if and only if 7r is. 

Let 7~ be an ergodic equivalence relation generated by a countable transfor- 



34 A . I .  D A N I L E N K O  Isr. J. Math .  

mation group F and pz: G -+ R+ the Radon-Nikodym cocycle, i.e. 

p~,(x,'yx) = l o g ~ [ x )  at a.e. x for each "y E F. 

The corresponding Mackey action W = {Wt}teR is called the a s soc i a t ed  flow 

of (R, #) (or the a s soc i a t ed  flow of F). There are several cases: 

- -  W is (essentially) transitive and free, 

- -  W is (essentially) transitive, nonfree; its stabilizer is (log A)Z for some 

A E (0, 1), 

- W is trivial (on a singleton), 

- -  W is free and nontransitive. 

R is said to be of (Krieger's) type II ,  III~, III1, IIIo respectively. We remark 

that  R is of type I I  if and only if there exists a measure #t ..~ # which is R- 

invariant, i.e. #1 o 7 = #' for each "y E [R]. The R-invariant measure in the class 

of/z is unique up to scaling. If it is finite then R is o f  t y p e  II1, otherwise R is 

of  t y p e  I I~ .  If A is a subset of positive measure then the associated flows of 

(R, #) and (R [ A, # (A) are conjugate. 

THEOREM 1.1 (Dye-Krieger): Two ergodic hyperfinite equivalence relations 

and R I are isomorphic if and only if one of the following is fulfilled: 

(i) they are both of type 111, 

(ii) they are both of type Iloo, 

(iii) they are both of type I I I  and the flows associated to them are conjugate. 

We also need the following simple fact. Let R and $ be two ergodic equivalence 

relations. If S is of type I[  then the associated flow of R |  S is conjugate to that  

of R. 

TAIL EQUIVALENCE RELATIONS. Let (Vn)n~176 be a sequence of finite nonempty 

sets. Put  V = I-L~__I 1/, and endow it with the product of the discrete topologies. 

Then V is a compact metrizable space. Denote by R C V x V the ta i l  equivalence 

relation. Recall that  two elements v = (v,) and v' = (v~) in V are R-equivalent if 

i for all sufficiently large n > 0. It is easy to verify the following properties V n ~ V n 

of R: 

(i) R is a a-compact subset of V x V; 

(ii) R is minimal, i.e. each R-equivalence class is dense in V; 

(iii) R is uniquely ergodic, i.e. there exists a unique probability R-invariant 

measure on V (we call it Haar measure for R). 
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AT-FLOWS AND FUNNY RANK ONE. Let v~ be a measure on Vn. Throughout 

this paper we assume that  u,(vn) > 0 for all v,, E Vn. If u,,(Vn) = 1 for all 
(3O 

n > 1 then the product u := ~,~=a u,~ is a finite Borel measure on V. Clearly, it 

is non-atomic if and only if o~ 1-]n=a maxv.ey,  un(v,) = 0. From now on we shall 

assume that u is non-atomic. It is well known that ~ is u-nonsingular, ergodic 

and hyperfinite. Moreover, 
o o  

p.(v, v ' )  = - l o g . . ( v . ) ) .  
n = l  

Notice that the sum contains only finitely many non-zero items. Clearly, u is 

7r if and only if un is equidistributed for every n E N. In this case R is 

of type II1. In general (TO, u) can be of an arbitrary Krieger's type. 

Definition 1.2: A nonsingular flow {Wt}teR on a standard measure space (X, #) 

is a p p r o x i m a t e l y  t r a n s i t i v e  (AT) if given e > 0 and finitely many non-negative 

functions f l , . . . ,  f,~ E LI+(X, It) there exists a function f �9 L~(X,  It) and reals 

tl ,  �9 �9 �9 tn such that 

m dIt  o Wtk  1 
f i - Z a i k f o W t ~ T  <e, i = l , . . . , n ,  

k=l  

where aik, i = 1 , . . . ,  n, j = 1 , . . . ,  m, are some non-negative reals. 

The following fundamental statement is due to A. Connes and E. J. Woods 

[CW] (see also [Haw] and [Ham] for a measure theoretical proof). 

THEOREM 1.3: The associated flow of (T~, u) is AT. Conversely, for every AT- 

flow {Wt }teR there exists a sequence (V,,, v.),, as above such that the associated 

flow of the tail equivalence relation on (V, g) is conjugate to {Wt}teR. 

Definition 1.4: A nonsingular action S of G on a a-finite Lebesgue space (Y, A, u) 
o o  has f u n n y  r a n k  one  if there is a sequence (Yn)~=t of measurable subsets of Y 

and a sequence (Gn),~~ 1 of finite G-subsets such that 

(i) the subsets SgY,~, g �9 G,~, are pairwise disjoint for each n > 0, 

(ii) given A �9 A of finite measure, then infpcG . u(AA U~ep SgYn) ~ 0 as 

12 --~ (:X:)~ 

- rldu ~ 0 as n -~ cx3. (iii) E g e G ,  inf fv ,  d~ 
rER 

Remark that  the funny rank one was introduced by J.-P. Thouvenot for prob- 

ability preserving Z-actions (see also [Fe]) and extended to the general case by 

A. Sokhet [So]. This property does not depend on a particular choice of u inside 

its equivalence class. Clearly, funny rank one implies ergodicity. 
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2. (C, F ) - a c t i o n s  

Two finite subsets CI and C2 of G are called i n d e p e n d e n t  if 

(C~ - C1)  n (C2 - C2)  = {0 } .  

A sequence (Cn)n~176 of finite G-subsets is i n d e p e n d e n t  if C1 + - . .  +Cn and Cn+l 

are independent for each n. This means that every element c of C1 + . . .  + Cn 

can be written uniquely a.s c = cl + �9 .. + an with Cl E C1,. �9 cn E Cn. 

G-ACTIONS ASSOCIATED TO PAIRS OF SEQUENCES OF FINITE SUBSETS. Let 
oo oo (Cn),~=l and (Fn)n=o be two sequences of finite G-subsets such that F0 = (0} 

and for each n > 0 the following are satisfied: 

(2.1) Fn + Cn+, c F.+I ,  #(Cn)  > 1, 

(2.2) Fn, Cn+l ,Cn+2, . . .  is independent. 

We put Xn := Fn x I-Ik>n Ck and define a map in: Xn ~ X,+I  by setting 

in(fn,Cn+l,Cn-t-2,...) :---- (fn "F C n + l , C n + 2 , . . . ) .  

Clearly, in is a homeomorphism of Xn onto its image in Xn+l. Denote by X 

the topological inductive limit of the sequence (Xn,in) and by zn: Xn --+ X 

the canonical embeddings, n > 0. Clearly, X is a locally compact non-compact 

totally disconnected metrizable space without isolated points and ~n(Xn) is 

clopen in X. 

Denote by Tin the tail equivalence relation on Xn. Clearly, 

(in x ~n)(nn) = n n + l  r in(Xn). 

Hence an inductive limit ~ of (7"s x in) is well defined. Clearly, 7~ is a 

countable a-compact minimal equivalence relation on X. Assume in addition 

that 

(2.3) g i v e n g � 9  there i s m � 9  c F n + I  for a l l n > m .  

Given g �9 G and n �9 N, we set 

D ( n ) : = ( F n r 3 ( F n - g ) ) x  H C k  and R ( n ) : = D  (") - - q "  

k>n 

Clearly, D (n) and R ('~) are clopen subsets of Xn and the map T.(n): D (n) -~ R (n) 

given by 

T~(n)(fn, Cn+,,...):---- (.fn + g, Cn+,,...) 



Vol. 121, 2001 W E A K  M I X I N G  F O R  N O N S I N G U L A R  A C T I O N S  37 

is a homeomorphism.  Put  

oo oo 

Dg := U ~"(D~ ('))' Rg := U ~"(R(g '~))" 
rt----I n ~ l  

Since the diagram 

D(gn ) T~") R(,) 

'~ 1 '~ 
D~,,+I ) TJ "+1' ) ~:~(n+ 1) 

a Lg 

commutes,  a homeomorphism To: Dg --+ Rg is well defined by Tgz,, = ~,,To (n). It 
n (n+l )  follows from (2.3) tha t  for each 9 E G there is m such that  ~g  D in(Xn) 

for a l l n  > m. Hence D 9 = X. Since Rg = D_g, weeone lude  that  R 9 = X.  

Moreover, it is easy to verify tha t  T92Tg t = T92+9 ,. Thus T = {Tg}gec is a 

topological action of G on X.  

THEOREM 2 . 1  : 

(i) T is a minimal free action of G on X ,  

(ii) R is the T-orbit equivalence relation, 

(iii) there is a unique (ergodic) a-finite T-invariant measure on X such that 

#(~0(Xo)) = 1, 

(iv) # is finite if  and only if 

lim #(Fn) < o0, 
,-,oo #(c~) . - .  # ( c , )  

(v) T has funny rank one. 

Proofi (i)-(iv) is routine. 

(v) We put  

(, n) Y,~ := z,, 0} x Ck and G,~ := F , .  
k > n  

It is easy to verify tha t  (Y,~),~ and (G,~)n satisfy Definition 1.4 and 

U TgY. = i~(x.), m 

9EG~ 
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Definition 2.2: We call T the (C, F ) -ac t ion  of G associated to (Cn) ,  and (Fn)n. 

# is called H a a r  measure  for Tr 

Notice t ha t  in the case of finite Haar  measure,  T is an analogue of the Chacon 

t ransformat ion .  The  difference F ,  \ ( C n  + F ~ - I )  plays the role of "spacers" a t  

the n - th  s tep in the classical construct ion [Fr]. 

It  is possible tha t  X is compact .  This  happens  if and only if Fn+l  = Fn +(7,+1 

for all sufficiently large n. Consider, for example,  G = Z, Cn = {0, ( - 2 ) n - 1 } ,  

F,, = CI + . . .  + C,,, n > O. 

We record wi thout  proof  a s tandard  

LEMMA 2.3: Let ]~i ~_ ai > 0 and Y~i~__l a i  _> (1 - e) ~-'~i~__l fli. Then ~ i 6 I  ~i > 
2 n 5 ~i=l r where I = {i I a i  > (1 - 3e)f/i}. 

Let (V, u) or V. oo = I - L = 1 ( n , u n )  for an independent  sequence (Vn)n=l of finite G- 

subsets  and probabi l i ty  measures  ix, on them. Given gl 6 V1,. . . ,  g ,  6 Vn, we 

s e t  I ( g l , . . .  ,gn)  = {V = (Vn) E W I Vl : g l , . . .  ,Vn = gn} .  

LEMMA 2.4: Let S be a I~-nonsingular equivalence relation on V and 5,/~: G --~ 

R+ two maps. I f  for every n E N and gl,g~l 6 V1 , . . . , gn ,g~  6 V'~, there is a 

par t ia l  transformation "~ 6 [[$]] such that the following properties are satisfied: 

D('),) C I (g , , . . . ,  g,~), R(7) C I (g l , . . . ,  g,); 

u(D(7 ) )  > 5(gl + " "  + gn - g~ . . . . .  g ~ ) u ( I ( g h . . . , g n ) ) ,  

duoT, , , , 
t v) _> ~(gl  + " "  -t- .(In - gl . . . . .  .qn) for all v 6 D(7) ,  

then S is ergodic. 

Proof." Let A and A'  be two Borel subset  of V of positive measure.  We can find 

n 6 N and gl,  g~ 6 V1,.. . ,  g,~, g~ 6 V~ such tha t  

4 u i  i , u(A1) > u ( l ( g l , . . . , g n ) )  and u(A~) > ~ ( ( g i , . . . , g , ) ) ,  

where A1 = A n I (g l  . . . .  ,.qn) and A' 1 = A'  n I(g~ . . . .  ,.q~). Since V1 , . . . ,  V,, are 

independent ,  the map  

(v l , . . . , v , )  ~ vl + . - . + v n  

is a na tura l  bijection of 1/1 x . . -  x Vn onto V1 + . "  + Vn. Wi thou t  loss of 

general i ty we may  assume tha t  n = 1. (Actually, replace the sequence V1, I /2 , . . .  

by the following one I/1 + - ' -  + Vn, V~+I , . . . . )  Next,  we set 

1 ( ~ ( g l - g l )  and e ' : = m i n  ~eNgl-gl)u(l(m))~ 
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There are clopen subsets Io C I(gl) and I~ C I(g~) with u(IoAA1) < eu(Io) and 

u(I~AA~) < dv(I~). Again we may assume that there are subsets C, C'  c V2 

with I0 = Ucec  I(gl,  c) and I~ = Go, co, I(g~, c'). Set 

6 1  :-- {c e e l  v(ml N I(gl,c)) > (1 - 3e)v(I(gl,c))}, 

C'l := {c '6  C'l u(A'I nI(g'l ,c '))  > (1 -3e ' )u( I (g~,c ' ) )} .  

Since u(Io A A1) > (1 - e)V(Io) and v(I~ N At) > (1 - e')v(I~), we deduce from 

Lemma 2.3 that 

2 #(A1) 8 2 > > . 

u2(C1) = u(I(gl)) > 3 u(I(gl)) 3 (1 + e)u(I(g,)) 15(1 + e) 

x for all 6 G. Therefore Without loss of generality we may assume that ~(g) < ~ g 

e < ~5 and u2(C1) > �89 In a similar way u2(C~) > �89 Thus there exists 

c �9 C1AC[. We apply the hypothesis of the lemma to I(gl,  c) and I(g~, c): there 

exists a partial transformation 7 �9 [[S]] such that 

D(7) C I(g,,  c), u(D(7)) > 5(gl -g~)u ( I (gb  c)), 
, duo" / ,  , 

n(7) c 101,c) ,  and - ~ - - 7  tv) = fl(gl - g2) for all v �9 D(7). 

Since v(D(7) n A1) > ev(Z(gl, c)), we deduce 

u(7(D(7) n A~)) _> fl(gl - g~)u(D(7) n A1) 

> eft(g1 - f ) u ( I ( g l ' c ) )  , , ,  , 1 u ( i ( g i : - ~ u u t g l ,  c)) 

, , . ( / ( g , ) )  , . , ,  , ,  
=  Z(gl - 91J .   gl, ejj  > c)) .  

Recall that  u(A'I N I(g', c)) > (1 - 3e')u(I(g',  c)). Hence u(7(D(~') n A) N A') > O, 
as desired. II 

In the following 5 subsections we demonstrate the 5 claims of Theorem 0.1, 

respectively. Theorem 0.2 is proved simultaneously. 

INFINITE ERGODIC INDEX FOR. (C, F)-TR.ANSFORMATIONS. From now on we 

shall assume that G has elements of infinite order. Enumerate them as al ,  a2 , . . . .  

LEMMA 2.5: Let 6: G -+ R+ be a map with ZgeG 6(g) < 1/2. Then there exist 
(x)  o o  o o  a sequence of  positive integers (Nn).=l and two sequences (Cn)n=l and (Fn)n=o 

oo C of finite G-subsets satisfying (2.1)- (2.3) such that 0 �9 ~n=l (  ~ N F.)  and 

(2.4) #(Cn( f ) )  > 6( f )#(Cn)  for each f �9 F,,_I, 



40 A . I .  D A N I L E N K O  Isr. J. Math .  

where C , ( f )  = {c E C,, I c' - c = N n a ,  + f for some c' E C,~}. 

Proo~ Let G = {gil i E N} and gl = 0. Suppose that we already have 

N1 , . . . ,  N , -1 ,  C1 , . . . ,  6 ' , -1,  F0 , . . . ,  Fn-1. Our purpose is to construct Nn, Cn 

and Fn. Let Fn-1 = {f,I i = 1 , . . . ,  k}. Select positive integers d l , . . .  ,dk in such 

a way that 6(f i)  < (d, - 1)/d, i = 1 , . . . ,  k, where d := dl + . . .  + dk. Now choose 

an integer Nn large so that 

(2.5) Z(Nnan) N (Fn-1 §  § F n - ~ -  F n - ,  . . . . .  Fn-1) = {0}. 
y y 

d t imes d t imes  

We define C,~ by listing its elements as follows: 

O, N , a ~  § f l ,  2Nna ,  § 2 f l , . . . ,  (dl - 1 )Nna ,  § (dl - 1)fl, 

d lNnan  § f2, (41 + 1)N,~an § 2 f 2 , . . . ,  (41 § d2)N,,an § d2f2, 
(2.6) 

(d + 1 - da)Nna,,  § f } , . . . ,  dNnan + dkf} .  

Clearly, C , ( f , )  is just the i-th line in (2.6) without the first (left) element. Hence 

#(Cn(f i ) )  = d, - 1 > 6 ( s  = 5(fi)#(Cn).  It follows from (2.5) that Cn and 

Fn-1 are independent. Now we define Fn by setting 

n 

Fn := U ( g i  + F n - l  + C , ) .  | 
i = l  

Remark 2.6: 

(i) It is worthwhile to observe that (2.1)-(2.4) imply 6', - C,~ D N n a ,  § F , - 1  

and C , ( f )  N C,~(f') = 0 if f ~- f ' .  
(ii) In our inductive construction the "upper size" of Fn is not bounded, i.e. 

every finite set containing our F,~ could also work as F, .  Hence without 

loss of generality we may assume that 

# (Fn)  
> n .  

# ( F , _ ,  + Cn) 

Let T be a (C, F)-action of G associated with (6',) and (Fn) satisfying (2.1)-(2.4). 

Without loss of generality we may assume that T is infinite measure preserving 

(see Remark 2.6(ii) and Theorem 2.1(iv)). We define a cocycle (~,: T~n --+ G by 

setting 

O 0  

5:( x, II  c~,,(x,x') x, x'i), x (x,)i= 1, E Fn x . . . .  (x,) ,=,  X .  = Ck. 
i=1 k > n  
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It is easy to deduce from (2.2) that the subrelation a~l(0) is trivial (diagonal), 

i.e. 

{ ( x ,  e n n l  = 0}  = �9 e x , } .  

Given a �9 G, we put T4n(a):= {(x,y) �9 T4n[ an(Z,y) �9 Za}. 

LEMMA 2.7: Let #r, be Haar measure for 7"4,. Given a �9 G of inBnite order, the 

equivalence relation Tin(a) is ergodic with respect to #,~. 

Proof: Let k E N and 9a,g~ E Fn, g2,g~ E Cn+l, . . . ,gk,g~ E Ck+n-1. Since 

0 E Nn~=l(Cn NFn),  it follows from (2.3) that F1 C F2 C . . .  and UnFn = G. 

Take l > k such that  g := g l + " ' +  gk - g~ . . . . .  g~ E Ft-1 and at E Za. Put  

D(~) := U I (g l , . . . ,  gk, ck+l , . . . ,  ct-1, c), 
Ck+lECk+l,...,Cl-lECl-l,cECt(g) 

T(,~) "Y := "N,a, r D(~/). 

Clearly, D(-y) C I ( g l , . . . ,  gk), 

" / I (gl , . . . ,  gk, Ck+l,.. . ,  Ct-1, c) = I (g~, . . . ,  g~, ck+l , . . . ,  Ct-1, c + Mat + g) 

and hence R('y) C I (g~, . . . ,  g~). From (2.4) we deduce that 

#,(P( 'y))  _ #(Ct(g)) - -  > 6(g) .  
#n( I (gb . . - ,gk) )  #(Ct) 

Since "), is a partial transformation from [[r4n(a)]], we apply Lemma 2.4 to 

complete the proof. I 

For each m > 1, we let (Xn,m, #,~,m) := (~n(Xn,  #n), /'4n,,~ := @ ~  T4n and 

an,m := ~ an. Remark that Xn,m can be considered as an infinite product 

space X,~,m = F ~  x 1-Ik>n C~ n, where the upper index m means the m-fold 

Cartesian product. Thus T4n,m is just the tail equivalence relation on Xn,m and 

#n,,~ its Haar measure. 

COROLLARY 2.8: Let a be an element of G of intinite order and 

nn,m(a) := a~ ,k (Z(a , . . - ,  a)). 

Then T4n,m(a) is an ergodic subrelation of l'4n,,n. 

Proof." Define a map 5m: G 'n ~ R+ by setting 5,n(gl, . . .  ,gin) = 5(gl) '"  .6(gin). 
Replace (Ck)k and (Fk)k by (C'~)k and (F~)k respectively, where the upper 

indices mean the m-fold Cartesian products. Then the later pair of sequences 

satisfies (2.1)-(2.4) with 6m instead of 6. It remains to apply Lemma 2.7. I 
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Remark 2.9: Since the set of cylinders is a base for the topology on X,,, it follows 

that 7~,,(a) and 7~a.,n(a) are topologically transitive. 

It is easy to verify that a , , + l o ( i , ,  x i n )  = an for each n �9 N. Hence an 

inductive limit a of (an, in x in) is well defined. Clearly, a is a cocycle of 7~ with 

values in G. It is straightforward that a(Tgx, x) = g for all x �9 X, 9 �9 G, i.e. a 

is a "return time" cocycle for T. Hence a is transient. Put  

~ '~  := T ~ | 1 7 4  
Y 

m times 

and 7~m(a) := ( a m ) - l ( Z ( a , . . . , a ) )  for an element a �9 G. Recall that # is Haar 

measure for ~ .  

THEOREM 2.10: Let a be a G-element ofint~nite order. 

(i) T~ is a #-preserving transformation on X of intinite ergodic index, 

(ii) 7~m(a) is an ergodic subrelation ofTC n for each m > O. 

Proof (ii) It is easy to verify that 

. m  n'n(a) = infl im(nn,m(a),z n • into). 
n - - ~ o o  

By Corollary 2.8, T~,~,m(a) is ergodic. From this we deduce that so is/~'~(a). 

(i) follows from (ii), since T~m(a) is the T a x  . . .  x T~orbit  equivalence 
Y 

m times 
relation. I 

Remark 2.11: We observe that Theorem 0.2(1) was proved simultaneously 

(cf. Remark 2.9): 

(i) T a x . . .  x T 5 is a topologically transitive transformation of X m, 

m times 
(ii) 7~'n(a) is a topologically transitive subrelation of 7~ m. 

POWER WEAKLY MIXING ACTIONS. The above ideas can be adapted to con- 

struct G-actions with more stronger ergodic properties. Let | = {Sn[ n C N} 

be the set of finite sequences of G-elements (possibly equal) of infinite order. We 

record an analogue of Lemma 2.5. 

LEMMA 2.12: Let 5: G --+ R+ be a map with )-~gec 5(g) < 1/2. Then there exist 

a sequence of positive integers (Nn)n~=x and two sequences (C,~)n~__x and (F,~)n~__o 

of finite G-subsets satisfying (2.1)-(2.3) such that 0 E N,~(C,~ M F,~) and 

(2.7) # ( C , ( f ,  b)) > 6 ( f )# (Cn)# (Sn)  -1 for each f E Fn_xand every b �9 Sn, 
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where Cn( f ,  b) = {c  C Cn[ c' - c = Nnb + f for some c' E Cn}. 

43 

Sketch of the proof Let S~ = (bl, . . . ,  bq). The a rgument  is similar to what  we 

used in L e m m a  2.5. Notice tha t  if A is a finite G-subset  and b an element of 

infinite order,  then for each a E A and all sufficiently large n the element n b - a  is 

of infinite order. Hence there is an increasing sequence ll < . . .  < lq-1 such tha t  

mb~+x - ibj is of infinite order for all m >_ l~, j _< s, i < l~-1 + d, s = 1 , . . . ,  q - 1. 

Here d is just  the same as in L e m m a  2.5. Now we let 

Cn := dn(ba) U (Nnllb: + A,(b2)) U. . .  tO (Nnlq_lbq + A,(bq)), 

where An(bj) is tile set "C,~" from L e m m a  2.5 with bj instead of "a,~". The  

integer N,, here is chosen so large to make C,, and F,~_ 1 independent .  We leave 

details to the reader.  | 

Remark  tha t  the assert ions 2.7-2.11 are corollaries from L e m m a  2.5. In a 

s imilar  way, one can deduce some analogues of  them from L e m m a  2.12 with an 

a lmost  literal a rgument .  We summar ize  them in the following 

THEOREM 2.13: Let T be the (C,F)-action of G associated to (C,~)~ and (Fn),~ 

which satisfy (2.1)-(2.3), (2.7) and Remark 2.6(ii). Then T is infinite measure 
preserving. Moreover, the transformation T~ • • Taq is topologically transitive 

and ergodic for each sequence ( a a , . . . ,  aq) 6 G. 

Remark 2.14: 
(i) I f  G = Z we obta in  an infinite measure  preserving t ransformat ion  T such 

tha t  T TM • . . .  • T n* is ergodic for each sequence of non-zero integers 

n l  . . . . .  nk. This  p roper ty  of T is called p o w e r  w e a k l y  m i x i n g  in [DGMS]. 

(ii) The  cocycle a has an interesting property.  Suppose for simplicity tha t  G 

is torsion-free. Then  for each m E N and a subgroup H of G m with the 

nontr ivial  coordinate  pullbacks, the quotient  cocycle 

(~m + H: ~ 7 ~  --+ Gm/H 
1 

has dense range in Gm/H. Recall t ha t  a m is transient.  

ACTIONS WITH NONCONSERVATIVE "SQUARE". Our purpose here is to demon-  

s t ra te  Theo rem 0.1(4). To this end we replace (2.4) by some conditions of the 

"opposite" nature:  there are two sequences (Cn),~ and (Fn)n which satisfy (2.1)- 

(2.3) and 
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(a) the sequence C1 - C1, C2 - C 2 , . . .  is independent,  

(b) for each n > 0, the map 

(C, x C n ) \ D  9 ( c , c ' ) ~ c - c '  6 C ,  - C "  

is one-to-one, where D :=  {(g,g)l g c G} is the diagonal in G x G, 
(c) 1 E n = l  ~ 0 0 .  #(-7r 

These sequences can be constructed explicitly by an inductive process. This is 

routine. 

THEOREM 2.15: bet T be the (C,F)-action of G associated to (Cn)n and (Fn)n 

as above. Then the Cartesian square {Tg x Tg}gec o f t  is nonconservative. 

Proos Recall tha t  X0 = I-I,~__l Cn and hence X0 x X0 = I]n~=l(Cn • Cn). We 

let A :=  l-ln~ • Cn) \ D). It  follows from (c) tha t  A has positive measure: 

oo # ( C , ) 2 _ # ( C ~ )  f i (  1 ) 
(# x p)(A) = 1-I #(---C-~ = 1 #(Cn)  > O. 

n----1 n = l  

If  (x ,y)  E A and (z' ,y') := (Tgz, Tgy ) E A for some g e G, then there is an 

integer r > 0 such tha t  

! I 
xl  + " "  + x r  + g  = x 1 + "'" + xr, 

y,  + - + y ,  + g  - -  y l  + " + y ' r .  

I ! ! Hence x l - y l + " ' + x r - y r  = x l - - Y l + ' ' ' + X ~ r - - Y r -  From (a) we deduce 
' - y ~ , . . . , x r  Yr ' y ' .  I t  follows from (b) tha t  xl  tha t  xl  - yl = Xl - = Xr -- = 

I .  ! x ~ , . . . , x r  = xr, Yl = Y~,-.-,Y~ = Yr- Hence g = 0. II 

We remark  tha t  the wandering subset A is compact  wi thout  isolated points 

and its interior is empty. 

ACTIONS WITH CONTINUOUS L~176 NONERGODIC CARTESIAN 

SQUARES AND ALL m-FOLD CARTESIAN PRODUCTS CONSERVATIVE. We first re- 

call tha t  given a nonsingular action S of G on (Y, v), a measurable map f :  Y -+ T 

is called an eigenfunction of S if f o S 9 = ~(g)f a.e. for a character  ~ E G. S is 

said to have t r i v i a l  L ~  if every eigenfunction of S is constant .  

The  following lemma is s tandard  and we state it without  proof. 

LEMMA 2.16: Let S be a nonsingular equivalence relation on a standard measure 

space (Y, 2, v), 20 a dense subalgebra of 2 and ~ a positive real H for every 

A E 20 there is a partial transformation 1' E [[S]] such that D(7) U R(7) c A, 
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u(D('y) > 5u(A), u(R('y)) > 5u(A) and ~/x r x for each x E D('y), then S is 

conservative. 

o o  Let a be an element of infinite order in G and {9n}n=l a sequence of (7- 

elements in which every 9 occurs infinitely often. One can construct inductively 

two sequences (C,~)n~__l and (F,~)n~176 0 which satisfy (2.1)-(2.3) and such that  

(a) C,~ = {O,N,~a,3N,~a+gn} for some integer N,~, n = 1 ,2 . . . ,  

(b) the sequence Cz - Ct, (5'2 - C2, . . .  is independent. 

Notice that 

C,~ - Cn = { -3Nna - 9n, -2Nna - 9,~, -Nna,  O, Nna, 2Nna + gn, 3Nna + gn}. 

THEOREM 2.17: Let T be the (C,F)-action of G associated to (Cn),~176 and 
F oo ( n)n=l as above. Then T has trivial L~176 nonergodic Cartesian square 

but all k-fold Cartesian products conservative. 

Proof'. Given m > 1, we denote by S the {T 9 •  x T~}gcc-orbit equivalence 

m t~mes 
relation. First we prove that ,.q is conservative. To this end it is enough to verify 

that the restriction of $ to X0,,,, is conservative. Recall that Xo,m = I-Ik>o C~ n. 

Given Cl E C~", . . . ,  cl E C/n, we denote by I (c t , . . . ,  ct) the corresponding cylin- 

der in Xo,m. Put v := (0 , . . . ,0 ) ,  w := (Nl+ta , . . . ,Nl+ la )  E C~+ t and define a 

partial transformation "y E [[$]] by setting 

O ( 7 ) : = t ( c l , . . . , c t , v ) ,  R ( 7 ) : = I ( c l , . . . , q , w ) ,  

"YV := (TN,+~ x - - .  x TN,+,~)V 

for all y �9 D('r). Clearly, D('r) U R('r) C I (cx , . . . ,  cl). We deduce from (a) that  

#(O('r)) #(R('r)) 1 
U(I(cl , . . . ,  q)) t , ( I ( c b . . . ,  q)) 3 m 

It follows from Lemma 2.16 that ,S is conservative. Actually, let 910 be the algebra 

generated by the cylinders and 6 := 1/(2 �9 3m). If A is a cylinder then--as we 

have just shown--the hypothesis of the lemma is satisfied. If A is the union 

of finitely many cylinders, then define -y as the "concatenation" of the partial 

transformations acting within each of these cylinders. Clearly, "y is as desired. 

We now show that {T 9 x Tg)gec is not ergodie. Let A :-= {0} x Y I b l  Ck and 

B := {Naa} • 1-Ik>l Ck. Clearly, A and B are subsets of positive measure in 

X0 C X. If there is 9 �9 G with (T 9 x Tg)(A x B) A (A x A) r 0, then 

{ 9  �9 0 + ~k>l (Ck  -- Ck), 
�9 Naa + ~ b l ( C k  - Ck). 
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But  this contradicts  (b). 

It  remains  to show tha t  the L~ of T is trivial. Let f :  X -~ T be 

a measurable  map  such tha t  f o Tg = ~(g)f for all g �9 G and some character  

�9 G. Given e > 0, there exists a subset  A C X0 of positive measure  such tha t  

I f (x )  - f (y) [  < e for all x,y �9 A. Take a cylinder I(bl . . . .  ,bq) C Xo such tha t  

(2 .8 )  

Since 

#(I(b l , . . . ,  by) A A) > 0 .99# ( I (b~ , . . . ,  bp)). 

#(I(b l , . . . ,  bp, 0)) = t~(I(bl,..., bp, Np+la)) 

= # ( I (bb . . . ,  bp, 3Np+la + gv+l)) 

and T preserves It, there is a subset  B C I (g l , . . . ,  bp, 0) such t h a t / ~ ( B )  > 0 and 

B U TN,+,,B U TN~+~,+~,+IB C A. Hence 

I i -~ (Np+la)[<e  and I 1 - ~ ( 2 N p + l a + g p + l ) l < _ _ e .  

It  follows tha t  ]1 - ~(gp+l)[ <_ 3e. For every q > p, there exists a cylinder 

I (b l , . . . ,bp , . . . ,bq)  for which (2.8) holds. Repeat ing the a rgument  we obta in  

[1 - ~(gq+l)[ ~ 3e. Since every element of G occurs infinitely many  t imes in 

{g,~}n~__l, it follows tha t  [1 - ~(g)l <- 3e for all g �9 G. Thus ~ is trivial. II 

INFINITE ERGODIC INDEX WITHOUT POWER. WEAK MIXING. It  may seem tha t  

Theorem 0.1(1) implies Theorem 0.1(2). The  purpose of this subsection is to 

disprove this conjecture: we demons t ra te  Theorem 0.1(3) here. 

LEMMA 2.18: Let 6 be as in Lemma 2.5. Then there are sequences (Nn), (Cn), 
(F~) satisfying (2.1)--(2.4) such that 0 E N,~(Cn n F,~) and 

(i) the sequence 2C1 - C1,2C2 - C 2 , . . .  is independent, 
(ii) for each n > 0, the map 

( C .  • "- r (c,  c')  2c  - c' e c n  - 

is one-to-one, where F = {(g,2g)l g C G}, 

(iii) ~n~__l #(C,~) -1 < ~ .  

Sketch of the proof: One should repeat  a lmost  literally the proof  of L e m m a  2.5. 

The  modif icat ion is as follows. Let a be an element of infinite order in G. Take 

some integer Mn (to be specified below) and set Cn := (C" + Mna) N {0}, where 

C" is jus t  the set Cn from L e m m a  2.5. Clearly (2.4) remains true for this new 

C,~. I t  will be also true if we replace Nn by a larger integer. Now we select Mn 
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in such a way that the "distance" between elements of 2C,~ - Cn is greater than 

the "diameter" of 2Cn-1 - C n - 1 .  In order to achieve this we may need to enlarge 

Nn. I 

THEOREM 2.19: Let T be the infinite measure preserving (C,F)-act ion of  G 

associated to (Cn) and (Fn) from Lemma 2.18. Then for each g E G of  infinite 

order the following is satisfied: 

(i) T 9 has infinite ergodic index, 

(ii) T29 x Tg is nonconservative. 

Proof'. The first assertion follows from Theorem 2.10. To prove the second we 

oo C Cn) "- r C X0 x X0 and repeat the proof of Theorem 2.15 let A := I-In=l( n x 

with an obvious modification. I 

Thus Theorems 0.1 and 0.2 are proved completely (see Theorems 2.10, 2.13, 

2.15, 2.17, 2.19; and Remark 2.11(i), Theorem 2.13 respectively). 

3. Generalized Hajian-Kakutani actions 

In this section we isolate a special class of (C, F)-actions which possess a number 

of interesting properties. 

EXHAUSTING WEAKLY WANDERING SUBSETS. Let T = {Tg}~eG be a free Borel 

action of a countable Abelian group G on (X, ~B). A set A E f13 is called 

exhausting weakly wandering (e.w.w.) for T under a (countable) subset 

S c G if the sets TgA, g E S, are disjoint and their union is X. The correspond- 

ing subset S is called tiling for T. 

PROPOSITION 3.1: Let # be a a-finite T-invariant ergodic measure on (X,  ~B). 

(i) I r A ,  B E ~ are e.w.w, under a very same tiling subset then #(A) = ~(B);  

(ii) i f  there exists an e.w.w, subset A E f8 with #(A) < oo then every Iz- 

nonsingular transformation commuting with T preserves #. 

For the proof in the case G -- Z we refer the reader to [EHI]. The general case 

is considered in a similar way. 

We do not provide a proof of the following statement since it is routine. 

! o o  PROPOSITION 3.2: There exists an independent sequence (C,,),~= 1 of  finite G- 

subsets such that 0 E [~n~176 1C~, #(C~) > 1, and C~ + C~ + . . . .  G. 

It is clear that  given nl < n2 < "" ", the sequence 

(C~ +- . .  + C',), (C',+, + . . - +  C'~),... 
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is also independent. We call it a t e l e scop ing  of (C~)n. 
We put F0 := {0}, Fn := C~ + . . - +  C~,, and Cn := C~,, for n > 1. Clearly, 

(2.1) and (2.2) are satisfied. 

Replacing (C~)n by an appropriate telescoping we may (and shall) assume that 

(2.3) holds. 

Definition 3.3: The (C, F)-action T of G is called a genera l i zed  H a j i a n -  
/ o o  K a k u t a n i  ac t i on  or, more precisely, the G-ac t ion  a s soc i a t ed  to  (C'k)k= 1. 

It follows from Theorem 2.1 that T is free, minimal and the corresponding 

Haar measure is infinite. Moreover, T is ergodic and has funny rank one with 

respect to this measure. 

Notice that T is an analogue of the Hajian-Kakutani transformation--i.e. Z- 

action--from [HK] (see also [EHI] and [M-Z]). 

It follows straightforwardly from the definition of T that 

U 
t 9EC2.+1 

and Tg(~n(Xn)) nTh(~n(X , ) )  = 0 for all g,h  E C~n+l with g :/: h. From this we 

deduce 

PROPOSITION 3.4: 

(i) Given n > O, the subset zn(Xn) is e.w.w, for T under ~-~k>_n C2k+1" 
o o  i ! (ii) IfTg~o(Xo) N z0(Xo) ~ 0 for some g E G then g E ~-~k=l(C2k -- C~k). 

It follows that T is of f ini te  t y p e  in the sense of [EHI], i.e. T admits e.w.w. 

sets of finite Haar measure. The following statement follows from this and Propo- 

sition 3.1. 

COROLLARY 3.5: 

(i) For each h E G, the set A := Th~o(Xo) is e.w.w, for T under ~-~k>>.o C2k+1" 
x-,oo fC I i (ii) I fTgA  N A ~ @ then g e z.,k=lx 2k -- C2k)" 

(iii) Every #-nonsingular transformation commuting with T preserves p. 

Definition 3.6: We say that a tiling set for a G-action is generating if it is not 

contained in any proper subgroup of G. 

Remark that in [M-Z], for G --- Z d, the generating tiling sets are called 

properly exhaustive. 
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PROPOSITION 3.7: If G is not a torsion group then there exists a sequence of 

independent finite G-subsets (C~) satisfying (2.3) and such that C~ +C~ + . . . .  G, 

0 �9 An C~, and the associated G-action has a generating tiling set. Moreover, 

the corresponding e.w.w, subset is of finite Haar measure. 

Proof'. Let a be an element of G of an infinite order. Denote by lr: G --~ G/Za 

the canonical projection map. One can choose a sequence of independent finite 

G-subsets (Cn)n~__l in such a way that the following is satisfied: 

(i) a �9 C1, 
(ii) Za = 61 + 62 + C4 + C6"" ", 

(iii) 7r(C3 + C5 + ' "  ") = G/Za, 

(iv) 0 �9 Nn Cn, #(Cn) > 1. 
Replace each of the two sequences C1, C2, C4, . . .  and Ca, C5, . . .  by some tele- 

scopings C~, C~, C~, . . .  and C~,C~,..., respectively, in such a way that (C~)n 

satisfies (2.3). It remains to apply Proposition 3.4(i). I 

S T R O N G  D I S J O I N T N E S S .  

Definition 3.8: Let F and F ~ be two topological G- actions on Polish spaces Z 

and Z' respectively. We say that F and F r are s t r o n g ly  d i s jo in t  if there is 

no non-atomic probability {F(g) x F'(g)}gea-quasi-invariant ergodic measure on 

Z • Z ~ whose Z-pullback is F-quasi-invariant or Z'-pullback is F'-quasi-invariant. 

Let a: N -+ N be a bijection such that {a(2) ,a (4) , . . .}  C {1 ,3 ,5 . . .} .  

Denote by T a the generalized Hajian-Kakutani G-action associated to the 

sequence (C:(n))neN and by X a the space of this action. 

THEOREM 3.9 (cf. [EHI, Theorem 2]): T and T ~ are strongly disjoint. 

Proo~ Let v be a non-atomic probability {T 9 x T~'}9r ergodic 

measure on X x X a and/~ its X-pullback. We assume that # is T-quasi-invariant. 

Denote ~0(X0) by W and the similar subset of X ~ by W% If 

(Tg • T;) (W • W ~ n (W • W e) # 0 

for some g �9 G, then T g W N W  r 0 and T ~ W a M W  ~ ~ 0. By Proposition 3.4(ii), 

OQ Oo 
g �9 ' ' C2k ) and g �9 ' - - C ~ , ( 2 k ) ) .  

k = l  k----1 
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C (2(3 Since the collection ( k)k=l is independent, it follows that g = 0. Hence the 

sets (Tg x T ~ ) ( W  x Wa),  g �9 G, are pairwise disjoint. Since u is ergodic and 

non-atomic, we obtain u(W x W ~) = O. In a similar way, u(W x T ~ W  ~) = 0 

for every h �9 G (see Corollary 3.5). Since W ~' is e.w.w, for T ~, it follows that 

v(W x X  ~) = 0 and hence #(W) = 0. In turn, W ise.w.w, for T ~ and this 

implies #(X)  = 0 and hence u (X  x X ~) = 0, a contradiction. II 

Remark 3.10: Slightly modifying the above argument one can find countably 

many bijections ~ri: N -~ N such that the corresponding G-actions T ~i, i �9 N, 

are pairwise strongly disjoint. In particular, (X a' , #i, T ~ is a countable family 

of pairwise disjoint (and hence non-isomorphic in the measure category sense) 

ergodic infinite measure preserving G-actions of finite type, where #i stands for 

Haar measure on X a~. 

4. N o n s i n g u l a r  ( C , F ) - a c t i o n s  a n d  T h e o r e m  0.3 

To prove Theorem 0.3 we adapt the argument used in the proof of Theorem 0.1 

to the nonsingular case. Trying to avoid repetitions we concentrate our attention 

on new phenomena only. We begin with an analogue of Lemma 2.5. 

Recall that (an)n~176 is a sequence consisting of all elements of G of infinite 

order. 

LEMMA 4.1: Let W = {Wt}t~R be an AT-flow and ~5: G ~ R+ a map 

with ~-'~gcc 5(g) < 1/2. There exist a sequence of positive integers (Nn)nc~__l, two 

sequences (Cn)~~176 1 and (F,~)n~__o of finite G-subsets and a sequence 

(~n)~_l of probability measures on (Cn)n such that: (2.1)(2.3)  are satisfied, 

0 E N,,~176 A Fn), the associated flow of the (nonsingular) tail equivalence 

relation on the product measure space ~n~__x(Cm ~,)  is W and 

(4 ,1 )  I~n(C~ 2> (~(f) :or each f �9 Fn-1, 

where 

C ~  := {c �9 Cnl c' - c = Nnan + f for some c' �9 Cn with ~n(c') = ~n(c)}. 

Proo~ Let G -- {gi[ i �9 N} and gl = 0. By Theorem 1.3, W is the 

associated flow of the tail equivalence relation, say 31, on an infinite product 

space ~,~~176 where each Vn is finite. Suppose that we already have 

N 1 , . . . , N , - I ,  C1 , . . . ,C , , -1 ,  F o , . . . , F , - 1 ,  ~ 1 , . . . , ~ , - 1  and our purpose is to 
�9 , f k construct Nn, Cn, Fn,~,,. Let V,, = {1,..  m} and F,~-I = { j} j=l.  Select 

positive integers d l , . . . ,  dk in such a way that di/d > 25(fi), di > 2m and di is 
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divided by m for each i = 1 , . . . ,  k. Now choose N ,  large so that (2.5) holds and 
k define Cn by (2.6). Consider a finite set D~ partitioned as Dn = Ui=: D,~(i) with 

#(Dn(i)) = d j m .  Decompose the i-th line of (2.6) into m consecutive blocks of 

equal length as follows: 
1-st  b l o c k  m - t h  b lock  

r @ . . . @  ~ . . . r  @ . . . @  �9 

d i /m  t e r m s  d,/rn t e r m s  

There is a bijection of V, x Dn onto Cn which maps {j} x Dn(i) onto the j-  

th block of the i-th line. This bijection transfers the product measure u, x 

(the equidistribution) to some probability measure on Cn. We call it ~n. Clearly, 

C~ is just the i-th line of (2.6) without the "bad" elements--the first terms 

of the blocks. Hence 

di di 

as desired. Now we define F ,  just like in Lemma 2.5, i.e. 

F ,  :-- U(gi + Fn-I + C,~). 
i = 1  

It remains to find the associated flow of the tail equivalence relation S on the 

C space (~n=: ( ,~, un). To this end we remark that 8 = 51 | $2, where 82 is the 

tail equivalence relations on (~)n~__l (D, ,  the equidistribution). Since 82 is of type 

II:, the associated flows of S and $1 are conjugate. | 

Suppose that (C,~)~ and (F~)~ satisfy (2.1)-(2.3). Given a sequence 

n,, of probability measures on C~ such that ~ is non-atomic, one can n = l  /~n 

construct inductively a sequence (T,~) of measures on (Fn) such that To(0) = 1 

and v,~(A-z + c,~) = v~-i(f~-l)~,~(c~). Wc furnish Xn = F,~ x ~k>,~Ca with 

the product measure ~n := va | (~)k>n ak. Clearly, #n o i~ t = #~+i [ in(Xn). 
Hence an inductive limit # of (#n)~~ l is well defined. Clearly, ~ is a a-finite 

measure on X. 

Definition 4.2: We call # a (C, F, g)-measure. 

We remark that the equivalence class of ~ does not depend on a particular 

choice of (vn). It is determined uniquely by (gn). 

Clearly, T~ (and the corresponding G-action T) is ~-nonsingular. Denote by p~ 
! 

its Radon-Nikodym cocycle. If x = (f,~, c~+: , . . . ) ,  y = ( f ' ,  c , ,+: , . . . )  E Xn then 

= log ,.(1") - log + (log - log 
k>n 
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It is easy to verify that T has funny rank one (cf. Theorem 2.1) with respect to 

#. Since Xo is a subset of positive measure in X, the associated flows of 7Z and 

Ts [ Xo are conjugate. 

The following statement is an analogue of Lemma 2.7. 

LEMMA 4.3: 7Z,(a) is an ergodic equivalence relation on ( X , , # , )  for every 

element a 6 G of infinite order. 

Sketch of  the proof: The proof is similar to that of Lemma 2.7. The crucial point 

is to apply Lemma 2.4. We remark that R,~ is no longer measure preserving. We 

define a map f~: G ~ R+ by setting 

1 i f g ~  a , ( n , ) ,  
~(g) = exp(p~(x,y)) i fg  = a , (x ,y ) .  

With this ]~ and 5 from Lemma 4.1 we apply Lemma 2.4 in a way similar to that 

used in Lemma 2.7. Remark that we replaced Cn (used in Lemma 2.5) by C ~ 

(used in Lemma 4.1) just to obtain the required (in Lemma 2.4) inequality for 

the Radon-Nikodym derivative. | 

Slightly modifying the proof of Theorem 2.10 we obtain 

THEOREM 4.4: Let (C,~), (F,~), (~,)  satisfy (2.1)-(2.3) and (4.1). Then the 

corresponding ( C, F)-action T of G has funny rank one with respect to a ( C, F, T )- 

measure. The associated flow of T is W.  For every a C G of infinite order, the 

transformation Ta has infinite ergodic index. 

Thus Theorem 0.3(1) is done. Theorem 0.3(2) can be demonstrated in a similar 

way. As for Theorem 0.3(4,5) they follow from the following two statements (cf. 

Theorems 2.15 and 2.17, respectively). 

THEOREM 4.5: Given an AT-flow W,  there exist (C,~), (Fn), (r~,,) satisfying 

(2.1)-(2.3), (a) and (b) before Theorem 2.15 and 

(c') E .  Ec co 2 < o0, 
(d) W is the associated flow of the tail equivalence relation on the product 

o o  
measure space l-[n=1 (C,,  v,).  

The corresponding (C, F)-action T of G has funny rank one with respect to a 

(C, F, a)-measure. The associated flow of T is W. The action T • T is non- 

conservative. 

THEOREM 4.6: Given an AT-flow W, there exist (C~), (F,~), (~,~) satisfying 

(2.1)-(2.3), (b) before Theorem 2.17and 
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(a') C2n = {0, N.a ,  3Nna + g.} for some integer N . ,  where a is a G-element of 

infinite order, 

(c) a2n is equidistributed on C2n, 

(d) W is the associated flow of the tail equivalence relation on the product 
oo C measure space H n = l (  n, vn). 

The corresponding (C, F)-action T of G has funny rank one with respect to a 

(C, F, a)-measure. The associated flow of T is W.  T has trivial L~176 

nonergodic Cartesian square but all k-fold Cartesian products conservative. 

Combining the arguments of Theorems 4.5 and 4.6 one can deduce 

Theorem 0.3(3). We leave the details to the reader. 
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